# What is 8 7 8 4 2

### Insert numbers in a term

Calculate the value of the term for \$\$ x = 1 \$\$.

\$\$ 4 * (x + 2) \$\$

To do this, you use the value.

\$\$4*(\$\$ \$\$+\$\$ \$\$2)\$\$

Now you can calculate the term. Always turn the Priority rules at.

\$\$4*(\$\$ \$\$+\$\$ \$\$2)\$\$

\$\$=4*3\$\$

\$\$=12\$\$

Terms are meaningful combinations of numbers, variables and arithmetic symbols.

Examples:

\$\$(5+3)\$\$

\$\$ x + 3 \$\$

\$\$1/2\$\$

\$\$ - 2 * x \$\$

Priority rules:

1. Always brackets first
2. Point before line calculation
3. calculate from left to right

### Calculate terms for multiple values

For different values ​​you calculate the term one after the other.

Calculate the values ​​of the term for \$\$ x = \$\$,, and.

\$\$ 3 * x-4 \$\$

\$\$ x = \$\$: \$\$ x = \$\$:

\$\$3*\$\$ \$\$-\$\$ \$\$4\$\$                   \$\$3*\$\$ \$\$-\$\$ \$\$4\$\$

\$\$=2\$\$                       \$\$=8\$\$

\$\$ x = \$\$: \$\$ x = \$\$:

\$\$3*\$\$ \$\$-\$\$ \$\$4\$\$                   \$\$3*\$\$ \$\$-\$\$ \$\$4\$\$

\$\$=23\$\$                     \$\$=14\$\$

At four You set values four times a number for \$\$ x \$\$ and do the math four times out.

### Calculate terms for negative numbers

You can also use \$\$ 0 \$\$ or negative numbers for \$\$ x \$\$.

Calculate the values ​​of the term for \$\$ x = \$\$,, and.

\$\$ (x + 2) * 3 \$\$

\$\$ x = \$\$: \$\$ x = \$\$:

\$\$(\$\$ \$\$+\$\$ \$\$2)*3\$\$                 \$\$(\$\$ \$\$+\$\$ \$\$2)*3\$\$

\$\$=6\$\$                       \$\$=3\$\$

Make sure you are really counting on the negative number when asked.

\$\$ x = \$\$: \$\$ x = \$\$:

\$\$(\$\$ \$\$+\$\$ \$\$2)*3\$\$                 \$\$(\$\$ \$\$+\$\$ \$\$2)*3\$\$

\$\$=-6\$\$                     \$\$=18\$\$

Negative numbers do not automatically mean that the result is negative.

The results can be very different if, for example, you calculate with \$\$ 4 \$\$ instead of \$\$ - 4 \$\$.

kapiert.decan do more:

• interactive exercises
and tests
• individual classwork trainer
• Learning manager

### Share by \$\$ 0 \$\$?

You can't divide by zero when calculating terms, either. Dividing by zero is not possible.

Example 1: Calculate the value of the term for \$\$ x = 0 \$\$.

\$\$ (2: x) * 3 \$\$

\$\$(2:\$\$ \$\$)*3\$\$

not solvable

You cannot calculate the term for \$\$ x = 0 \$\$. You can calculate it for all other numbers.

Example 2: Substitute \$\$ 2 \$\$ and \$\$ - 2 \$\$ for \$\$ x \$\$ and calculate the term.

\$\$ 4: (2 + x) \$\$

for \$\$ x = -2 \$\$ for \$\$ x = 2 \$\$

\$\$4:(2+(-2))\$\$                   \$\$4:(2+2)\$\$

\$\$=4:\$\$                           \$\$=4:4\$\$

not solvable                       \$\$=1\$\$

You cannot calculate the term for \$\$ x = -2 \$\$. For all other values ​​(example \$\$ x = 2 \$\$) it works anyway.

When you encounter dividing by zero, write not solvable to your bill.

### A variable can appear several times in a term

If a variable occurs several times in a term, put \$\$ x \$\$ in each the same value a.

Calculate the value of the term for \$\$ x = \$\$ and \$\$ x = \$\$.

\$\$ 4 * x + x \$\$

For \$\$ x = 2 \$\$:

\$\$4*\$\$ \$\$+\$\$ \$\$=10\$\$

For \$\$ x = 3 \$\$:

\$\$4*\$\$ \$\$+\$\$ \$\$=15\$\$

Even if you are supposed to use several different values ​​for x, you can only ever use the same number.

Wrong: \$\$ 4 * x + x \$\$ \$\$ rarr \$\$  4 · 2 +3

### Different variables can be in one term

Terms can have multiple variables.

Calculate the value of the term for and.

\$\$+\$\$ \$\$2*\$\$

For and :

\$\$+\$\$ \$\$2*\$\$

\$\$=3+4\$\$

\$\$=7\$\$

Don't swap the values ​​and the variables. If you use the \$\$ y \$\$ value for the \$\$ x \$\$ value, this usually gives a different result.

Wrong: \$\$ 2 + 2 * 3 = 8 \$\$

kapiert.decan do more:

• interactive exercises
and tests
• individual classwork trainer
• Learning manager